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1. Introduction

Conformal interfaces provide a natural framework to extend the (1+1)-dimensional confor-

mal field theory (CFT) with boundaries. Taking into account the important roles played

by the boundary CFT in condensed matter physics and string theory, one expects that the

interface CFT also opens up new directions in such studies. In fact, interesting properties

have already been found: For example, all the symmetries of the rational CFT are gen-

erated by a class of interfaces called topological interfaces [1]. Topological interfaces also

transform one set of D-branes to another [2, 3]. For (potential) applications and a (partial)

list of references, we refer to [1 – 13] and references therein.

When a system consists of two (or more) sub-systems as in the interface CFT, the

quantum correlation, i.e., entanglement, between the sub-systems is a useful probe to

the system. The entanglement entropy is a measure of this entanglement. In (1+1)-

dimensional systems, the entanglement entropy of the ground state shows a sharp contrast

between the critical and the non-critical regime [14] and, at the critical point, there appears

a universal logarithmic scaling with respect to the size of the system characterized by the

central charge [15, 16]. In (2+1)-dimensional systems, the leading term of the ground state

entanglement entropy scales linearly as the boundary size of the system, whereas the sub-

leading term characterizes the topological order of the systems, named as the topological

entanglement entropy [17, 18]. Entanglement is essential also in quantum computation and
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information. The references on the entanglement entropy in (1+1)-dimensional systems

with defects include [19 – 21].

In this note, we consider the entanglement entropy in the c = 1 interface CFT. A class

of conformal interfaces in this theory has been constructed which interpolates perfectly

transmitting and reflecting interfaces [6]. In addition to the physical relevance of the

c = 1 CFT, because of the fact that these permeable interfaces are simple but possessing

structures characterized by some parameters, we expect that they provide useful insights

into the interface CFT. The entanglement entropy may be a useful probe, and its role in

the interface CFT is of interest.

In section 2, we briefly summarize the entanglement entropy with slight generalizations

in the case of the interface CFT. We also introduce the c = 1 permeable interfaces. In

section 3, we compute the partition functions with the interfaces inserted. In section 4,

using this result and the replica trick, we obtain the entanglement entropy analytically

when the sizes of the two CFT’s joining at the interface are equal. The entropy scales

logarithmically with respect to the size of the system, similarly to the universal scaling

in the case without interfaces. However, its coefficient is not constant but controlled by

the permeability. The sub-leading term counts the product of the winding numbers. This

shows an analogy to the topological entanglement entropy in (2+1)-dimensional systems. In

deriving the entropy, we adopt two approaches: One is based on the Bernoulli polynomials

and numbers, which provides a general method for carrying out the replica trick. Another

is a direct evaluation of a sum by an integral for the large size of the system. In the course

of verifying the equivalence of the results from the two approaches, we find that the scaling

coefficient is expressed by the dilogarithm function. In section 5, we conclude with a brief

summary. Some useful formulas are collected in the appendix. The entanglement entropy

in the c = 1 interface CFT has been discussed in [22] in a different setting from ours and

in the context of the boundary entropy and its holographic dual.

2. Setup

2.1 Entanglement entropy in interface CFT

We consider two (1+1)-dimensional CFT’s defined on a half complex plane Rew > 0 and

Rew < 0, respectively. The interface between CFT1 and CFT2 lies along the imaginary

axis Rew = 0. The conformal invariance requires the continuity condition

L1
n − L̃1

−n = L2
n − L̃2

−n , (2.1)

at the interface, where La
n, L̃a

n (a = 1, 2; n ∈ Z) are the left and the right Virasoro gener-

ators of CFTa.

We are interested in the entanglement entropy of the ground state. The entropy is

defined by the von Neumann entropy of the reduced density matrix for the ground state

ρ1 = Tr2 |0〉〈0| as

S = −Tr1 ρ1 log ρ1 = − ∂

∂K
Tr1 ρK

1

∣

∣

∣

K=1
, (2.2)
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where Tra stands for the trace over the degrees of freedom in CFTa. The trace of the K-th

power of the reduced density matrix is represented by a partition function on a K-sheeted

Riemann surface RK whose branch cut runs along the real axis from w = 0 to ∞ [23]:

Tr1 ρK
1 =

Z(K)

ZK(1)
≡ 1

ZK(1)

∫

Dφ exp

[

−
∫

RK

d2wL(φ)

]

, (2.3)

where φ represents the fields of CFT1 and CFT2. The interface is inserted on each sheet

of RK . The normalization factor 1/ZK(1) assures Tr1 ρ1 = 1. From this path-integral

representation, the entropy is given by

S = (1 − ∂K) log Z(K)
∣

∣

∣

K=1
. (2.4)

As in the case without interfaces, how mixed the reduced density matrix is depends on

the correlation across the interface, and hence the von Neumann entropy measures the

entanglement of the CFT’s through the interface.

To evaluate the partition function with the interface inserted, we move to z = log w

plane. Introducing cutoffs at |w| = ǫ and |w| = L [15, 19], the K-sheeted Riemann

surface RK is mapped to a rectangular whose lengths along the real and the imaginary

axis are (log(L/ǫ), 2πK), repsectively. The interface is mapped to Im z = (2m − 1)π/2

(m = 1, . . . , 2K). In the following, we set ǫ = 1/L for simplicity.

Here, we impose the periodic boundary condition along the Re z direction. When

the interface is absent, this reduces to the treatment in [15], and we can check that our

final results actually reproduce those in [15] as a special case. (Our L corresponds to Σ/ǫ

in [15], as is clear from our setting.) Also, when the interface is topological (see below),

our partition function is regarded as a generalization (in the c = 1 case) of the generalized

twisted partition functions discussed in [5]. In order to carry out the analysis independently

of the boundary conditions, it is desirable to generalize the analysis in [15, 16, 24] based

on the conformal invariance to our case with interfaces.

Now, our partition function is a torus partition function with 2K interfaces inserted.

Recall that the ground state density matrix is represented by the product of the ground

state wave function Ψ0Ψ
∗
0 in deriving the path-integral representation (2.3), and that Ψ0

(Ψ∗
0) gives the path-integral on the lower (upper) half w-plane. One then finds that the

interfaces at Im z = (2m − 1)π/2 for odd m and those for even m are hermitian conjugate

with each other. Therefore, we find that

Z(K) = Tr1

(

I12 qL2
0+L̃2

0 (I12)
† qL1

0+L̃1
0 I12 · · · (I12)

† qL1
0+L̃1

0

)

, (2.5)

where q = e−2πt with t = π/(2 log L), we have denoted the interfaces by I12 and (I12)
†, and

each of them appears K times alternately. We have also rescaled the rectangular in the

z-plane so that it becomes of the standard lengths (2π, 2πt). The subscript “12” is put to

make explicit the fact that I12 joins CFT1 and CFT2 in this order. The above expression

is manifestly symmetric with respect to CFT1 and CFT2, as it should be.
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2.2 c = 1 permeable interfaces

We now specialize our discussion to the case of the c = 1 permeable interfaces. A general

way to construct conformal interfaces is to use the folding trick [4]: Let us set τ̃ = Rew.

Then, by flipping the sign of τ̃ for τ̃ < 0, CFT2 comes to live on the τ̃ > 0 half plane.

In the course, the interface becomes a conformal boundary, which can be expressed by a

conformal boundary state of the tensor product theory CFT1⊗CFT2. In fact, the condition

of the conformal invariance of the interface (2.1) becomes that of the conformal boundary,

L1
n + L2

n − (L̃1
−n + L̃2

−n) = 0, since the left and the right movers and the positive and the

negative modes in CFT2 are exchanged, respectively, by the folding. Conversely, unfolding

a conformal boundary state gives a conformal interface.

In this way, from the boundary states of the tensor product theory of two free bosons,

the c = 1 permeable interfaces are obtained [6]:

I
± (α,β)
12 (k1,k2)

(θ±) = G
± (α,β)
12 (k1,k2)

(θ±)

∞
∏

n=1

e
1
n

(

S±

11 α1
−nα̃1

−n−S±

12 α1
−nα2

n−S±

21 α̃1
−nα̃2

n+S±

22 α2
nα̃2

n

)

,

G
+ (α,β)
12 (k1,k2)

(θ+) = g+

∞
∑

N,M=−∞

ei(Nα−Mβ)|k2N, k1M〉〈k1N, k2M | , (2.6)

G
− (α,β)
12 (k1,k2)

(θ−) = g−

∞
∑

N,M=−∞

ei(Nα−Mβ)|k1M,k2N〉〈k1N, k2M | ,

where

S± =

(

∓ cos 2θ± − sin 2θ±
∓ sin 2θ± cos 2θ±

)

, g± =
∣

∣

∣

k1k2

sin 2θ±

∣

∣

∣

1/2
, (2.7)

and

tan θ+ =
k2R2

k1R1
, tan θ− =

2k2R1R2

k1
. (2.8)

αa
n, α̃a

n (a = 1, 2; n ∈ Z) are the modes of the free boson φa compactified on a circle

with radius Ra. They satisfy [αa
m, αb

n] = mδm,nδab and similar expressions for α̃a
n. It is

understood that αa
−n, α̃a

−n (n > 0) implicitly act on G±
12 from the left and αa

n, α̃a
n (n > 0)

from the right. ka is the winding number for φa. |na,ma〉 is the oscillator vacuum for φa

with the momentum na/Ra and the winding number ma. Its dual is denoted by 〈na,ma|.
I+
12 is obtained from the boundary state with one Dirichlet and one Neumann boundary

condition. θ+ is the angle between the φ1 and the Neumann direction in the target space.

I−12 is obtained by T-dualizing the boundary state for I+
12. In unfolding, there is a choice

of which CFT is unfolded. Changing this choice gives “anti-interfaces” Ī±21 [11], which are

equivalent to (I+
12)

† with some signs of the parameters flipped. One can check explicitly

that the continuity condition (2.1) is satisfied by these interfaces.

The matrices S± control interactions between CFT1 and CFT2. When θ± are a mul-

tiple of π/2, the two CFT’s decouple and the interfaces become totally reflective. When

θ± are odd multiple of π/4, the interfaces become totally transmissive. In this case, the
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interface is called topological, since each of the left and the right energy-monentum tensor

becomes continuous across the intreface, i.e., L1
n = L2

n and L̃1
n = L̃2

n, and hence the inter-

face can be freely deformed. Note that the identity operator is included as a special case

of the topological interface I
+ (0,0)
12 (1,1) (π/4).

3. Partition functions with interfaces inserted

In this section, we compute the partition function with the interfaces inserted, i.e., Z(K)

in (2.5) for I±12. The computation in the following can be regarded as a generalization of

(part of) that in [11] for the fusion of the interfaces.

3.1 Case of I+
12

Here, we consider the case of I+
12. To carry out the computation, it is convenient to first

focus on a unit of the products of the operators in Z(K),

J = I+
12 qL2

0+L̃2
0 (I+

12)
† qL1

0+L̃1
0 , (3.1)

and rewrite the quadratic oscillator parts in I+
12 and (I+

12)
† as

(α1
−n, α̃2

n) ·
(

−c s

s c

)

·
(

α̃1
−n

α2
n

)

, (α2
−n, α̃1

n) ·
(

c s

s −c

)

·
(

α̃2
−n

α1
n

)

, (3.2)

respectively, where c = cos 2θ+ , s = sin 2θ+. We then linearize the quadratic forms by

an identity

e
~A· ~B =

∫

d2~z

π2
e−~z·~̄z−~z· ~A−~̄z· ~B , (3.3)

which is valid when all Ai, Bi (i = 1, 2) are commuting with each other. After the lin-

earization, one can explicitly put the creation operators αa
−n, α̃a

−n (n > 0) on the left

of G+
12 or (G+

12)
†, and the annihilation operators αa

n, α̃a
n (n > 0) on the right. Further

pushing the Virasoro generators to the oscillator ground states in G+
12 or (G+

12)
† using

eαa
nqLa

0 = qLa
0eqnαa

n , and commuting the creation and annihilation operators between G+
12

and (G+
12)

†, one finds that

J =
∏

n

∫

d2~zn

π2

∫

d2 ~wn

π2
e−~zn·~̄zn−~wn· ~̄wn × eqnzn2(cw̄n1+sw̄n2)+qn(sz̄n1+cz̄n2)wn1

×
∏

n

e−
1
n

zn1α1
−n+(cz̄n1−sz̄n2)α̃1

−n · G′ ·
∏

n

e−
1
n

wn2qnα̃1
n+(−sw̄n1+cw̄n2)qnα1

n , (3.4)

where zni are the components of ~zn etc., and

G′ = g2
+

∑

N,M

q
ǫ
R1
k2N,k1M

+ǫ
R2
k1N,k2M

− 1
6 |k2N, k1M〉〈k2N, k1M | , (3.5)

for k1k2 6= 0 with

ǫR
n,m =

(

n

2R

)2

+
(

mR
)2

. (3.6)
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For k1k2 = 0, we have different expressions of G′ due to the change of the zero-mode

structure in G+
12. We separately discuss this case later. We then take the K-th power of J ,

commute the creation and annihilation operators, and perform the zn2- and wn1-integrals

so as to maintain the linearity of the oscillators. Relabeling zn1, wn2 as zn, wn, we find that

Z(K) = Tr1 JK = g2K
+

∞
∑

N,M=−∞

q
K(ǫ

R1
k2N,k1M

+ǫ
R2
k1N,k2M

)
q−K/6

∞
∏

n=1

Pn , (3.7)

where

Pn = DK
n

K
∏

k=1

∫

d2z
(k)
n

π

∫

d2w
(k)
n

π
e−z

(k)
n z̄

(k)
n −w

(k)
n w̄

(k)
n

× es2q2nDn(w
(k)
n w̄

(k+1)
n +z̄

(k)
n z

(k+1)
n )−cqn(1−q2n)Dn(w

(k)
n z̄

(k+1)
n +w̄

(k)
n z

(k+1)
n ) , (3.8)

with Dn = (1 − c2q2n)−1 and z
(K+1)
n = z

(1)
n , w

(K+1)
n = w

(1)
n .

Since

ǫR1
k2N,k1M + ǫR2

k1N,k2M =

(

k2N

2R1 sin θ+

)2

+

(

k1R1M

cos θ+

)2

, (3.9)

the sum over N,M gives a product of the theta function ϑ3. The remaining Pn are eval-

uated as follows. Introducing a 4K-vector t~v = (Re z
(1)
n , Im z

(1)
n , Rew

(1)
n , Imw

(1)
n , . . .), the

exponent in Pn is expressed as −t~v · MK · ~v, where MK is a 4K × 4K symmetric matrix

MK =























14 C · · · tC
tC 14 C · · ·

tC 14 C · · ·
. . .

. . .

C tC 14























with C =

(

a(12 − σ2) 0

b · 12 a(12 + σ2)

)

. (3.10)

1n is the n×n unit matirx, σ2 is a Pauli matrix, and a = −s2q2nDn/2, b = cqn(1−q2n)Dn.

Performing the Gaussian integrals then gives Pn = DK
n [det MK ]−1/2. The determinant of

MK here is regarded as a generalization of the circular determinant (see e.g. [25]), and

obtained similarly:

detMK =

K
∏

k=1

det(1 + ωkC + ω−1
k

tC)

= D2K
n

K
∏

k=1

[

1 − 2(c2 + dks
2)q2n + q4n

]2
(3.11)

= D2K
n

[

(p+
n )K − (p−n )K

]4
,

where ωk = e2πik/K , dk = cos(2πk/K) and p±n = (1/2)
[
√

1 − 2(c2 − s2)q2n + q4n ± (1 −
q2n)

]

. To derive the last line, we have used a formula (A.1). The above expression shows

– 6 –
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that detMK and hence Z(K) are actually analytic in K. We also notice that
∏

Pn gives rise

to a product of the theta function ϑ1. With the help of a formula (A.2), we finally obtain

Z(K) = g2K
+ |s|K−1Kϑ3

(

itKk2
2

2R2
1 sin2 θ+

)

ϑ3

(

2itKk2
1R

2
1

cos2 θ+

)

ηK−3(2it)

K−1
∏

k=1

ϑ−1
1 (νk|2it) ,(3.12)

for k1k2 6= 0, where η(τ) is the Dedekind eta function, and

πνk = arcsin

(

|s| sin πk

K

)

. (3.13)

The ϑ1 part is similar to the oscillator part of the amplitude between D-branes at angles.

This is naturally understood, once we notice that, in the K-sheeted Riemann surface RK ,

the array of the interfaces resembles pairs of D-branes at angles.

3.2 Case of I−12

The case of I−12 is similar. For the oscillator part, it turns out that the integral expression

for Pn is obtained by replacing in (3.8) c = cos 2θ+, s = sin 2θ+ with − cos 2θ−, sin 2θ−,

and thus the final expression by θ+ → θ−, i.e., R1 → 1/2R1. For the zero-mode part, the

expression corresponding to (3.9) is also obtained by R1 → 1/2R1. Therefore, Z(K) in

this case is obtained from (3.12) by R1 → 1/2R1 (and hence θ+ → θ−). This is expected,

since I−12 is constructed from the boundary state in which CFT1 is T-dualized compared

with the boundary state for I+
12.

3.3 Special cases

So far, we have considered the case of k1k2 6= 0. When k1k2 = 0, while the analysis of

the oscillator part remains the same, the zero-mode structure and the product of G±
12 and

(G±
12)

† change. Repeating similar computations, one then finds for I+
12 that the product

of ϑ3’s in (3.12) is replaced by ΘK
1 ≡ ϑK

3

(

itk2
1/2R

2
2

)

ϑK
3

(

2itk2
1R

2
1

)

for k1 6= 0, k2 = 0

and ΘK
2 ≡ θK

3

(

itk2
2/2R

2
1

)

θK
3

(

2itk2
2R

2
2

)

for k1 = 0, k2 6= 0. When both k1 and k2 vanish,

the original boundary states and hence the interfaces are not well-defined, since Cardy’s

condition is not satisfied. We will not discuss this case. From (2.8), one also finds that

k1k2 = 0 implies s = 0 (unless taking the decompactified limit (or its T-dual) R1,2 = 0,∞
which is not covered in our setting). Z(K) is then simplified as Z(K) = g2K

+ ΘKη−2K(2it),

where Θ = Θ1 or Θ2. The results for I−12 is obtained by R1 → 1/2R1 as above.

4. Entanglement entropy

Given the partition functions with the interfaces inserted, we would now like to discuss the

entanglement entropy. In the following, we concentrate on the case of I+
12, since the results

for I−12 are easily read off from those for I+
12. We also focus on the case with k1k2 6= 0,

unless otherwise stated.

To compute the entropy via (2.4), we need the analytic form of Z(K) in K. A way

to obtain it is to continue the product in (3.12) with respect to K, and another is to use

– 7 –
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the last expression in (3.11) in terms of p±n . We first adopt the former with the help of the

Bernoulli polynomials and numbers. This provides a rather general method to carry out

the replica trick. We then use the latter, which is more straightforward. In the course of

showing the equivalence of the results from the two approaches, we find that the entropy

is expressed by the dilogarithm function.

We start with the result of Z(K) in (3.12). Since the modular parameter t = π/(2 log L)

is small for L ≫ 1, it is convenient to evaluate it by the modular transformation τ → −1/τ .

One then finds that (when |s| 6= 0)

Z(K) =
(g2

+|s|)K
|k1k2|

e−(K−3)π/24t eϕ(K)/t
(

1 + O(e−µ/t)
)

, (4.1)

where µ is a positive constant and

ϕ(K) =
π

2

K−1
∑

k=1

(

1

2
− νk

)2

, (4.2)

with 0 < νk < 1 (k = 1, . . . ,K − 1). Note that ϕ(K) is of the form

ϕ(K) =
K−1
∑

k=1

f
( k

K

)

, f(x) =
1

2π
arccos2(|s| sin πx) . (4.3)

Since f(x) is analytic around x = 0, we expand it as f(x) =
∑∞

m=0 fmxm. A useful fact here

is that
∑

k km is expressed by the Bernoulli polynomials bn(x) and numbers bn as in (A.4).

From this and properties of bn(x), bn summarized in the appendix, it follows that

∂Kϕ(K)
∣

∣

∣

K=1
=

∞
∑

m=0

fm

m + 1
∂Kbm+1(K)

∣

∣

∣

K=1

= f(0) +
1

2
f ′(0) +

∫ ∞

0

if ′(ix) − if ′(−ix)

1 − e2πx
dx . (4.4)

After plugging the explicit form of f(x) and changing the variables as u =

arcsinh (|s| sinh πx), we apply the result to (2.4), and obtain

S = σ(|s|) log L − log |k1k2| , (4.5)

up to terms vanishing for L ≫ 1, where

σ(|s|) =
|s|
2

− 2

π2

∫ ∞

0
u

(
√

1 +
(

|s|/ sinh u
)2 − 1

)

du . (4.6)

We find that the entropy has a logarithmic scaling with respect to the size of the system

L, but the coefficient σ(|s|) is a function of |s|. It turns out shortly that σ(|s|) is expressed

by the dilogarithm function. The sub-leading term counts the product of the winding

numbers. This is analogous to the topological entanglement entropy in (2+1)-dimensional

systems characterizing the topological order [17, 18]. We also note that the entropy is a

function of θ+, k1, k2 only, and does not depend on α, β,R1, R2 explicitly.
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In special cases, σ(|s|) is simplified. First, let us consider the topological case, |s| = 1.

Since the identity is included as a special case, this case should reproduce the universal

scaling of the ordinary entanglement entropy without interfaces. In fact, one finds that

σ(1) = c/3 = 1/3, which agrees with the result [15, 16]. Next, when |s| is small, one

can show that the second term in (4.6) is O(|s|2 log |s|), and that σ(|s|) → |s|/2. This

implies that the leading term decreases as |s| does, which also agrees with the fact that

the oscillator part of the two CFT’s are decoupling as |s| → 0. The result for small |s|
is derived also by directly expanding νk in (3.13). For general |s|, one can check that

σ(|s|) monotonically interpolates these two cases. This supports an intuition that the

entanglement changes according to |s|, since |s| is the strength of the interaction between

the two CFT’s. In [9], certain reflection and transmission coefficients are introduced as

probes of conformal interfaces. For the c = 1 permeable interfaces, they give c2 and s2.

Compared with those coefficients, one finds that the entanglement entropy (4.5) can probe

a little more details of the interfaces.

When the sizes of the two systems are L and Λ−L, the entanglement entropy without

interfaces scales as (c/3) log
[

(Λ/π) sin(πL/Λ)
]

+ const. [15], where the sub-leading con-

stant term is independent of L [16]. In our case with interfaces, the entropy should also

be symmetric under the exchange of the two CFT’s, and the above scaling should be re-

produced in a special case. A possible form for L 6= Λ/2 satisfying these requirements is

S = σ(|s|) log
[

(Λ/2) sin(πL/Λ)
]

− log |k1k2|.
Here, some comments for special cases may be in order. When k1k2 = 0 and hence

s = 0, it follows from the result in section 3.3 that the entropy exactly vanishes: S = 0.

This confirms the fact that the two CFT’s decouple in this case. When k1k2 6= 0 and hence

s 6= 0 (unless in the decompactified limit), the entropy might appear to be negative for

small enough s. This, however, is not the case: To obtain (4.1) by modular transformations,

we have used t/s2 ≪ 1 for ϑ3’s. Thus, the result in (4.5) is valid when the first term

is large enough. In fact, since L is the cutoff in our setting and can be arbitrarily large

independently of other parameters, this condition is always satisfied by taking large enough

L. Note that, however small s is, the two CFT’s couple through the zero-modes if k1k2 6= 0.

In order to analyze the case where k1k2 6= 0 and s log L is small with actually finite L, one

may need to develop a method to compute the entanglement entropy for finite systems,

e.g., by generalizing the results in [16].

One can also derive the entropy by applying the expression of Z(K) =

g2K
+ ϑ3ϑ3q

−K/6
∏

Pn in terms of p±n . Recalling the formula (2.4), we first evaluate

∞
∑

n=1

∂K log Pn

∣

∣

∣

K=1
= −2

∞
∑

n=1

F (2πtn)

≃ −1

πt

∫ ∞

0
F (y) dy + F (0) , (4.7)

as t → 0, where

F (y) = log |s| − y +

√

1 +
(

|s|/ sinh y
)2

arcsinh
(

sinh y/|s|
)

, (4.8)
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and F (0) = 1 + log |s|. We have used p+
n p−n = |s|2q2n, and assumed that s is not van-

ishing so that F (0) is not divergent. In the case without the derivative ∂K , a similar

approximation by an integral is subtle, since the summand is singular at t = 0. Thus, we

instead note that
∏∞

n=1 Pn

∣

∣

K=1
= e−πt/3η−2(2it), which after a modular transformation

gives
∑∞

n=1 log Pn

∣

∣

K=1
≃ π/(12t)+log(2t). Together with ϑ3ϑ3 ≃ |s|/(2Kt|k1k2|) for small

t, the entropy is obtained as S = σ̃(|s|) log L − log |k1k2|, with

σ̃(|s|) =
1

6
+

2

π2

∫ ∞

0
F (y) dy . (4.9)

Compared with the previous result (4.5), σ̃(s) should agree with σ(s). To show this,

we consider their derivatives:

σ′(s) =
1

2
− 2

π2

∫ ∞

0

dw arcsinh w

w
√

1 + w2
√

1 + w2/s2
, σ̃′(s) =

2

π2

∫ ∞

0

dz arcsinh z

z
√

1 + z2
√

1 + s2z2
, (4.10)

and

σ′′(s)=
−2

π2s

∫ ∞

0

dw (w/s2) arcsinh w
√

(1+w2)(1+w2/s2)3
, σ̃′′(s)=

−2

π2s

∫ ∞

0

dz (s2z) arcsinh z
√

(1+z2)(1+s2z2)3
, (4.11)

where we have made changes of variables w = sinhu and z = s−1 sinh y. The integral for

σ′′(s) here is performed as

−π2s

2
σ(s)′′ =

1

s − 1/s

(
√

w2 + 1

w2 + s2
arcsinh w − arcsinh

w

s

)∣

∣

∣

∣

∣

∞

w=0

=
log s

s − 1/s
. (4.12)

One then finds that −(π2s/2)σ̃(s)′′ is also given by the above, namely σ(s)′′ = σ̃(s)′′,

since the integral representations of s · σ′′ and s · σ̃′′ are related by s ↔ 1/s. It is easy to

confirm that the integration constants are also the same, e.g., by checking special values

σ(1) = σ̃(1) = 1/3, σ′(1) = σ̃′(1) = 1/4, which verifies σ(s) = σ̃(s).

As a by-product, we find by integrating σ′′(s) that σ(s) is expressed as

σ(s)=
1

6
+

s

3
+

1

π2

[

(s + 1) log(s + 1) log s + (s − 1) Li2(1 − s) + (s + 1)Li2(−s)
]

, (4.13)

where Li2(z) is the dilogarithm function. We summarize some properties of Li2(z) in the

appendix. Using them, one can rederive the values of σ(1), σ′(1), and the small-s behav-

ior of σ(s).

5. Summary

We have obtained the partition functions with the c = 1 permeable interfaces inserted, and

the entanglement entropy of the corresponding interface CFT analytically. The entropy

scales logarithmically with respect to the size of the system, as in the case without inter-

faces [15, 16]. Its coefficient, however, is not a constant but a monotonic function of |s|
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controlling the permeability, and is given explicitly in terms of the dilogarithm function.

The sub-leading term of the entropy counts the product of the winding numbers. This

is analogous to the topological entanglement entropy, which characterizes the topological

order in (2 + 1)-dimensional systems [17, 18].

Our results show that the entanglement entropy is a useful probe to the system, as in

the case without interfaces. It would be interesting to study how general our findings are:

For example, does the entropy always contain the topological information of the system?

Does it always show the scaling as in the case without interfaces? Regarding such studies,

it would be useful to generalize the analysis based on the conformal symmetry [15, 16, 24]

to the case with interfaces. A complication with interfaces is that one has to keep track

of the shape of interfaces under conformal transformations. It would also be interesting

to consider implications of the entanglement entropy in the context of condensed matter

physics and string theory.
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A. Useful formulas

In the main text, we apply the formulas

n−1
∏

r=0

[

x2 − 2xy cos

(

θ +
2rπ

n

)

+ y2

]

= x2n − 2xnyn cos nθ + y2n , (A.1)

n−1
∏

r=1

sin

(

rπ

n

)

=
n

2n−1
. (A.2)

We also use the Bernoulli polynomials (see e.g. [25]) bn(x) (n = 0, 1, 2, . . .) defined by

text

et − 1
=

∞
∑

n=0

bn(x)
tn

n!
(|t| < 2π) . (A.3)

Their derivatives are b′n(x) = nbn−1(x). At x = 0, they give the Bernoulli numbers bn,

namely, bn = bn(0). bn with odd index vanish except for b1, and b0 = 1, b1 = −1/2, b2 =

1/6, b4 = −1/30, . . . . One also has bn = bn(1) for n 6= 1, and b1(1) = 1/2. By the Bernoulli

polynomials, the sums of powers of natural numbers are expressed as

(m + 1)
n−1
∑

k=1

km = bm+1(n) − bm+1 (n,m = 1, 2, . . .) . (A.4)

– 11 –



J
H
E
P
1
2
(
2
0
0
8
)
0
0
1

The Bernoulli numbers with even index have an integral representation,

b2n = 4n(−1)n
∫ ∞

0

t2n−1

1 − e2πt
dt . (A.5)

From this, it follows that

1

m + 1
∂nbm+1(n)

∣

∣

∣

n=1
= δm,0 +

1

2
δm,1 + (im − (−i)m)

∫ ∞

0

mtm−1

1 − e2πt
dt . (A.6)

In section 4, we use the dilogarithm function defined by

Li2(z) =

∞
∑

k=1

zk

k2
= −

∫ z

0

log(1 − w)

w
dw . (A.7)

σ′′(s) in (4.12) is integrated by using the above integral representation and

∫

dz Li2(z) = z Li2(z) − z − (1 − z) log(1 − z) . (A.8)

From Li2(1) = π2/6, Li2(−1) = −π2/12, one can check the values of σ(1) and σ′(1). To

derive the small-s behavior of σ(s), useful formulas are (A.7) and

Li2(1 − z) = −Li2(z) − log z log(1 − z) +
π2

6
. (A.9)
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